Show simple item record

dc.contributor.advisorJoseph Harris.en_US
dc.contributor.authorLarson, Eric Kerneren_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2018-09-17T15:47:48Z
dc.date.available2018-09-17T15:47:48Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117868
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 57-58).en_US
dc.description.abstractLet C be a general curve of genus g, embedded in Pr via a general linear series of degree d. In this thesis, we prove the Maximal Rank Conjecture, which determines the Hilbert function of C Pr.en_US
dc.description.statementofresponsibilityby Eric Kerner Larson.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleThe maximal rank conjectureen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc1051190194en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record