MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization and application of type VI-B RNA-targeting CRISPR systems

Author(s)
Cox, David Benjamin Turitz
Thumbnail
DownloadFull printable version (19.86Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Feng Zhang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The ability to modify nucleic acids is critical for establishing the role of genetic and transcribed elements in mediating biological phenotypes. Manipulating endogenous DNA sequences in eukaryotic genomes has been greatly aided by the advent of genome editing technologies that utilize programmable nucleases. DNA nucleases derived from class 2 CRISPR systems, which provide adaptive immunity in prokaryotes through cleavage of nucleic acids using a single, multi-domain, RNA-guided endonuclease, have been particularly useful in this regard because they enable targeting of new sites through simple Watson-Crick base pairing rules. Recent computational studies have uncovered the existence of predicted RNA-targeting class 2 CRISPR systems, suggesting that the power of genome editing techniques might be extended to the level of transcripts. In this thesis, I present work describing the discovery and characterization of a new RNA-targeting class 2 CRISPR system: type VI-B. Using a combination of biochemistry and bacterial genetics, we demonstrated that the predicted nuclease of the VI-B system, Casl3b, is an RNA-guided RNase, whose activity can be modulated by the csx genes that often appear in genetic proximity to casl3b. Next, we characterized the behavior of Casl3b and the related enzymes Casl3a and Casl3c in mammalian cells, identifying orthologs of Casl3a and Casl3b with specific RNA interference activity in mammalian cells. Finally, we showed that catalytically inactive versions of a Casl3b ortholog can direct adenosine-to-inosine deaminase activity to transcripts in human cells when fused to the catalytic domain of ADAR2. Using structure-guided mutagenesis, we created a high-specificity version of this system that can be utilized in research or potentially therapeutic contexts. The description of a Casl3b ortholog that can be used to knockdown or recruit RNA-modifying domains to transcripts in mammalian cells suggests the utility of this technology to interrogate and modify transcript function in diverse contexts.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117869
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.