MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the metric structure of random planar maps and SLE-decorated Liouville quantum gravity

Author(s)
Gwynne, Ewain
Thumbnail
DownloadFull printable version (65.35Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Scott R. Sheffield.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A random planar map is a graph embedded in the sphere, viewed modulo orientation-preserving homeomorphisms. Random planar maps are the discrete analogues of random fractal surfaces called [gamma]-Liouville quantum gravity (LQG) surfaces with parameter [gamma] E (0, 2]. We study the large-scale structure of random planar maps (and statistical mechanics models on them) viewed as metric measure spaces equipped with the graph distance and the counting measure on vertices. In particular, we show that uniform random planar maps (which correspond to the case [gamma]= [square root of]8/3) decorated by a self-avoiding walk or a critical percolation interface converge in the scaling limit to [square root of]8/3- LQG surfaces decorated by SLE8/3 and SLE6, respectively, with respect to a generalization of the Gromov-Hausdorff topology. We also introduce an approach for analyzing certain random planar maps belonging to the [gamma]-LQG universality class for general [gamma] E (0, 2) and use this approach to prove several estimates for graph distances in such maps.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 457-470).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117871
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.