MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualizing inhibitory and excitatory synapse dynamics In vivo

Author(s)
Berry, Kalen P. (Kalen Paul)
Thumbnail
DownloadFull printable version (6.306Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Elly Nedivi.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Structural plasticity is one of the physical manifestations of circuit rewiring in the brain. Once thought to be relegated solely to developmental time periods, we now know that even in the mature brain inhibitory or excitatory connections can be made and broken, modifying the information flow within a circuit by enabling or removing specific information channels. However, the properties of inhibitory and excitatory synapse dynamics are not well understood. To address this issue, we utilized triple-color two photon microscopy to examine inhibitory and excitatory synapses across time with daily imaging. We found that the majority of dynamic spines at these intervals lacked a mature excitatory synapse as indicated by the absence of PSD-95. Inhibitory synapses were also highly dynamic during daily imaging, much more so than expected from previous results imaging at longer intervals, especially those located on spines which also contain an excitatory synapse. Surprisingly, we found that many inhibitory synapses, on the dendritic shaft and on spines, were also repeatedly removed and then reformed again at the same locations on the dendritic arbor. These recurrent inhibitory dynamic events at persistent locations represent a novel role for synapse dynamics, modulating local excitatory activity via their addition or removal. The rate of inhibitory synapse turnover was also modified by experience, as shown through their responses following monocular deprivation. We further sought to investigate these events on even shorter time scales by developing a dual color labeling strategy in combination with a newly developed line scanning temporal focusing two photon microscope, enabling imaging of the entire dendritic arbor and its inhibitory synapses in just a few minutes. This system allows for examination of synapse dynamics on the hourly time scale in vivo and can be expanded to study other molecular events that occur too fast for conventional two photon imaging.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, June 2018.
 
Cataloged from PDF version of thesis. Page 75 blank.
 
Includes bibliographical references (pages 66-74).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117876
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.