MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local-to-Global extensions for wildly ramified covers of curves

Author(s)
Bell, Renee Hyunjeong
Thumbnail
DownloadFull printable version (1.865Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Bjorn Poonen.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Given a Galois cover of curves X --> Y with Galois group G which is totally ramified at a point x and unramified elsewhere, restriction to the punctured formal neighborhood of x induces a Galois extension of Laurent series rings k((u))/k((t)). If we fix a base curve Y, we can ask when a Galois extension of Laurent series fields comes from a global cover of Y in this way. Harbater proved that over a separably closed field, every Laurent series extension comes from a global cover for any base curve if G is a p-group, and he gave a condition for the uniqueness of such an extension. Using a generalization of Artin-Schreier theory to non-abelian p-groups, we characterize the curves Y for which this extension property holds and for which it is unique up to isomorphism, but over a more general ground field.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 41).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117883
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.