MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling regulatory impacts on medical device supply chains

Author(s)
Medina, Melissa (Melissa M.)
Thumbnail
DownloadFull printable version (3.477Mb)
Other Contributors
Massachusetts Institute of Technology. Supply Chain Management Program.
Advisor
Bruce C. Arntzen.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Changing regulatory requirements continues to be an increasingly complex issue in the medical device industry. Regulations place stress on regional supply chains across the world. Most recently, the European Parliament issued the Medical Device Regulation (EU) 2017/745 instituting new compliance framework for all devices manufactured, sold, and/or distributed in the European Union. The new framework requires the implementation of unique device identifiers and more stringent conformity assessment procedures. In addition, many device classification types have changed, post-market clinical surveillance has been instituted, and traceability through a centralized IT database is now mandated. While the the act aims to improve patient safety and efficacy across the medical device industry, it poses huge impacts across both the physical and informational flows in supply chains. This research evaluates the regulatory impact across supply chain operations using predictive modeling and machine learning. The model determines how various activities and events in manufacturing and sourcing environments contribute to supply constraints when modified to accommodate new regulatory requirements. The model also determines how product attributes contribute to performance variability. By taking a proactive approach to assess the impacts of regulatory changes, firms can optimize supply chain flows to reduce cost, lead-time, and service level risks.
Description
Thesis: M. Eng. in Supply Chain Management, Massachusetts Institute of Technology, Supply Chain Management Program, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 27).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117928
Department
Massachusetts Institute of Technology. Supply Chain Management Program
Publisher
Massachusetts Institute of Technology
Keywords
Supply Chain Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.