Show simple item record

dc.contributor.advisorKaren K. Gleason and Yang Shao-Hom.en_US
dc.contributor.authorMoni, Priyaen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2018-09-17T15:50:36Z
dc.date.available2018-09-17T15:50:36Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117934
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractAutonomous mini- and microscale devices require the miniaturization of component devices such as on board integrated circuits (ICs) and electrochemical power sources. A paradigm shift to micro/nanostructured 3D geometries can enable high device performance within a small areal footprint. Fabrication of such devices requires processes to form structures in a material of interest and subsequently modify the structure with additional functional materials. This thesis explores the chemical vapor deposition (CVD) of polymer thin films to enable both the formation and modification of nanostructures. The CVD method allows for simultaneous polymer synthesis and thin film formation. The broad range of applications studied in this thesis all benefit from the single-step, in-situ control of the final polymer functionality and thin film properties enabled by the CVD of polymers. The first portion of this thesis studies the formation of nanostructures for ICs via the directed self-assembly (DSA) of block copolymers (BCPs). Initiated CVD (iCVD) is used to form cross-linked poly(divinyl benzene) (pDVB) films that control the orientation of self-assembled BCPs. The cross-linking mechanism of pDVB is first ascertained to form durable films. In-situ chemical modification of iCVD pDVB is then used to tune the final orientation of the selfassembled BCP film. A conformal iCVD pDVB film is then integrated into existing DSA processes to yield a nano-template that could be used to fabricate nanostructured ICs. The second portion of this thesis studies the modification of nanostructures by active and supporting materials used in electrochemical power systems. The iCVD process is used to develop conformal, solid polymer electrolytes, a supporting material for solid state lithium ion batteries. Out of several multi-vinyl cyclic chemistries, poly(tetravinyltetramethylcyclotetrasiloxane) (pV4D4) films displayed the highest ionic conductivity (10-⁷ S cm-¹) and high conformality. Active materials for supercapacitors were developed using the oxidative chemical vapor deposition (oCVD) of conductive polymers. The oCVD process was used to control the crystallographic texture of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. Edge-on texture maximized the pseudocapacitive charge storage of this material. Conformal PEDOT thin films on micro-structured current collectors enabled higher energy densities in a high power, asymmetric supercapacitor.en_US
dc.description.statementofresponsibilityby Priya Moni.en_US
dc.format.extent167 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleChemical vapor deposition of functional and conformal polymer thin films for the formation and modification of nanostructuresen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1051236387en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record