Show simple item record

dc.contributor.advisorChristopher A. Schuh.en_US
dc.contributor.authorXing, Wenting, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2018-09-17T15:51:08Z
dc.date.available2018-09-17T15:51:08Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117947
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 129-135).en_US
dc.description.abstractThe development of stable nanocrystalline binary alloys, which possess a large volume fraction of grain boundaries at elevated temperatures, is a promising route to high yield strength materials. Previous studies have focused on alloying by selecting solute elements that segregate at grain boundaries to stabilize the nanostructure. A selection criterion has been established for designing stable binary nanocrystalline materials. This thesis explores the extension of this concept to the design of multicomponent nanostructured systems. In contrast to the simplicity of a binary system where not many topological possibilities are accessible, multicomponent nanostructured systems are shown to occupy a vast space where the large majority of interesting configurations will be missed by a regular solution approximation. This thesis describes research to develop a conceptual basis for the thermodynamic properties of multicomponent nanocrystalline alloys, and to design interesting ternary configurations not accessible in binary systems. The conditions necessary to achieve the desired nanostructure configurations are developed in a model that takes solute interactions into consideration. Based on the model, we performed a systematic case study on one alloy system expected to exhibit nanocrystalline stability: Pt-Pd-Au. As a control, two binary systems (Pt-Au, Pt-Pd) were produced for comparison. While a uniform distribution of Pd is observed in binary Pt-Pd alloys at 400 °C, the results from scanning transmission electron microscopy (STEM) reveal that Pd segregation behavior was induced by the Au grain boundary segregation in the ternary system at 400 °C. Our work on induced co-segregation behavior of Pt-Pd-Au alloy is just a simple example of solute interaction in nanocrystalline alloys. Our approach more generally presents a new design framework to control the complex configurations possible in nanocrystalline materials by alloying element selection.en_US
dc.description.statementofresponsibilityby Wenting Xing.en_US
dc.format.extent135 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleDesign of stable nanostructure configurations in ternary alloysen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1051237336en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record