Show simple item record

dc.contributor.advisorDaniel Whitney and Karen Zheng.en_US
dc.contributor.authorSmith, Becky Louen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2018-09-17T15:51:11Z
dc.date.available2018-09-17T15:51:11Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117948
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-109).en_US
dc.description.abstractWarehouses and fulfillment centers have traditionally been designed to handle bulk orders of pallet and cases. The growth in e-commerce is demanding operational improvements for efficient storage of large selections and the ability to quickly pick, fill, pack and ship single items and small orders. Online grocery fulfillment presents a new gamut of challenges due to the unique storage and handling requirements of grocery products. As demand increases, storage space can quickly become a performance-limiting constraint. Operations managers must find creative ways to fit more products into the same amount of space, while maintaining or increasing throughput to meet the increased demand and efficiency targets. This thesis proposes that an optimum fulfillment center storage system can be achieved by strategically balancing trade-offs between labor productivity and space utilization and by minimizing the impacts of variation. This document evaluates the relationships between these trade-offs and highlights five guiding principles of great storage systems for high-rate fulfillment centers. Amazon Fresh will serve as a case-study to provide a real-world complex application for testing the claims presented in this thesis. Research findings and the five guiding principles are are used to develop data-supported recommendations to address storage-related challenges at Amazon Fresh fulfillment centers. The insights from this research can be used to improve storage capacity and efficiency with a well-balanced storage system.en_US
dc.description.statementofresponsibilityby Becky Lou Smith.en_US
dc.format.extent109 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleFulfillment center storage optimizationen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1051237340en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record