MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive demand models in the food and agriculture sectors : an analysis of the current models and results of a novel approach using machine learning techniques with retail scanner data

Author(s)
Oliveira Pezente, Aline (De Souza Oliveira Pezente)
Thumbnail
DownloadFull printable version (13.17Mb)
Other Contributors
Technology and Policy Program.
Advisor
Roberto Rigobon.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Agriculture commodities production and consumption are typically not aligned since the timing of commodity production with its pace of consumption is disjoint, once commodities are often produced periodically (with certain crops being harvested once a year) but with a continuous consumption throughout the year. The temporal mismatches in production and consumption require both commodities consumers (food industries) and producers (farmers) to predict future consumption based on limited unreliable information, about the future of demand and available historical data. Consequently, the lack of an appropriate understanding of what is the actual food consumption trend, lead's the producers in some cases to make wrong bets, which eventually causes food waste, price volatility and excess commodities stock. The commodities market has a good view of short-term supply fundamentals but still lacks powerful tools and frameworks to estimate long-term demand fundamentals, of which will drive the future supply. This thesis studies commodities demand forecasting using Nielsen's Retail Scanners data based on machine learning techniques to construct nonlinear parametric models of commodities consumption, using the U.S sugar cane as our use case. By combining Nielsen Retail Scanner data from January 2006 to December 2015 for a sample of 30% of U.S retail, wholesalers and small shops, considering a basket of products that has sugar as one of its main components, we were able to construct out-of-sample forecasts that significantly improve the prediction of sugar demand compared to classical base-line model approach of the historical moving average.
Description
Thesis: S.M. in Management of Technology, Massachusetts Institute of Technology, Sloan School of Management, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 51-53).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117950
Department
Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Technology and Policy Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.