Show simple item record

dc.contributor.advisorStephen Graves and David Simchi-Levi.en_US
dc.contributor.authorMorrison, Ryan Cannonen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2018-09-17T15:52:12Z
dc.date.available2018-09-17T15:52:12Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117974
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 57).en_US
dc.description.abstractThe large multi-channel apparel distribution center was built as a purely wholesale building in the 1900s. With distribution becoming more complex due to e-commerce and smaller orders for more frequent replenishment, the requirements for the distribution center have changed significantly. The manner in which work flows through the building is influenced by batch size and release logic, which have not evolved to keep up with changing demand. Under the current flow of work, associates cannot stay busy working at the same processing (packing) station. Unstaffed processing stations are used as buffers, and associates move to unstaffed processing stations when they run out of work. The current flow prevents staffing all of the processing stations which significantly reduces the long-term throughput capacity. This thesis lays out a methodology to improve flow and unlock throughput capacity by changing batch size and control logic to meet future demand. The key enablers of this thesis were: 1) The collection of data to evaluate progress at key steps in the process 2) A holistic understanding of how the system functions, as well as the implications on the longterm throughput capacityen_US
dc.description.statementofresponsibilityby Ryan Cannon Morrison.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleUnlocking DC throughput capacity through improved flowen_US
dc.title.alternativeUnlocking distribution center throughput capacity through improved flowen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1051238226en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record