MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulating the use of channel reciprocity in laser communication system operations to improve quality of service through varying atmospheric conditions

Author(s)
Eichenberg, Neal (Neal Thomas)
Thumbnail
DownloadFull printable version (7.742Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Erich P. Ippen and John D. Moores.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This project's goal was to develop a simulation model to conduct design analysis and to illustrate the positive and negative aspects of utilizing channel reciprocity versus interleaving. There were three project objectives. The first was to create a numerical model of a laser communications system that included either channel reciprocity or interleaving to mitigate the effects of atmospheric turbulence. This model was implemented in MATLAB* and Simulink*. The second task integrated the model with a graphical user interface (GUI), which provides the user a choice of different configurations and solutions based on the user's design specifications. For example, the user may elect to sweep the scintillation index to see the impact that a variety of turbulence levels have on the bit error rate (BER). The user has the ability to sweep each variable and observe the performance. With this model, the user objectively compares optical communication systems with and without the utilization of channel reciprocity. Scenarios may be run to determine which settings provide the most optimized quality of service (QoS) metrics. The third goal was to test the QoS of both cases against theoretical values in order to check the validity of the MATLAB and Simulink models. These three objectives were met, and channel reciprocity techniques were determined to be an excellent choice for specific conditions. Given the same transmit power, channel reciprocity with and without forward error correction (FEC) achieves a far lower BER than a system that utilizes interleaving and FEC. This low BER is achieved by setting the gating threshold for the transmission of information well above the signal to noise (SNR) requirement. Latency issues could arise, but they are managed in this model by setting the buffer input to output ratio such that the output is always at least twice the input. Although reciprocity without FEC is not a viable solution for all scenarios, it was found that it makes sense to utilize reciprocity without FEC for some cases. However, reciprocity with FEC is recommended for all cases that have round trip durations that are less than the coherence time.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 68-73).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118050
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.