MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed dynamic partially stateful dataflow

Author(s)
Behrens, Jonathan (Jonathan Kyle)
Thumbnail
DownloadFull printable version (4.752Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
M. Frans Kaashoek and Malte Schwarzkopf.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis present a distributed implementation of Noria, a new streaming dataflow system that simplifies the infrastructure of read-heavy web applications by unifying the database, caching layer, and parts of application logic in a single system. Noria's partially-stateful dataflow allows it to evict and reconstruct state on demand, and avoid prior dataflow systems' restriction to windowed state. Unlike existing dataflow systems, Noria adapts on-line to schema and query changes, and shares state and computation across related queries to eliminate duplicate effort. Noria's distributed design enables it to leverage the compute power of an entire cluster while providing high availability thanks to its fault tolerant design. On a single machine, Noria already outperforms MySQL by up to 7 x, but when running across a cluster of machines, it can scale to tens of millions of reads and millions of writes per second.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 43-49).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118054
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.