MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cryptography for societal benefit

Author(s)
Park, Sunoo
Thumbnail
DownloadFull printable version (30.81Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Shafi Goldwasser.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The deployment of cryptography in society has a range of effects that are not always evident when studying cryptography as a technological construct in isolation. This observation suggests a number of natural research directions that examine cryptography as an instrument of societal influence; that is, as a technological construct in conjunction with its societal effects. This thesis presents the results of six papers spanning the three broad contexts listed next. - Institutional accountability Cryptography can enhance transparency and accountability of institutions seeking public trust, such as governmental agencies, judicial systems, and election infrastructure. - Individual empowerment in oppressive environments Cryptography can empower individuals to communicate securely and undetectably and to preserve their anonymity, even in hostile environments. - Incentivizing collaboration Cryptography can facilitate collaboration between rational -- possibly selfish and/or competing -- parties in a way that is beneficial to all participants, by providing credible guarantees of secrecy and correct protocol execution to mutually distrustful parties.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 331-349).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118099
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.