Show simple item record

dc.contributor.advisorElizabeth M. Nolan.en_US
dc.contributor.authorStephan, Jules Rabieen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2018-09-28T20:59:54Z
dc.date.available2018-09-28T20:59:54Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118277
dc.descriptionThesis: Ph. D. in Biological Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018.en_US
dc.descriptionCataloged from PDF version of thesis. Vita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIn response to an invading pathogen, the host organism initiates an immune response to fight infection. One component of the response involves metal-sequestering proteins that starve pathogens of essential metal nutrients. Humans release calprotectin (CP), a heterooligomer of S100A8 and S100A9, from neutrophils and epithelial cells to prevent microbes from accessing manganese, iron, nickel, and zinc. CP also binds Ca(II) ions, which increases the transition-metal affinity and antimicrobial activity of CP. In addition, Ca(II) causes the S100A8/S100A9 CP heterodimer to form a S100A82/S100A9₂ tetramer. When this dissertation research began, it was known that CP inhibited bacterial growth by sequestering transition metals, and that CP could transmit a proinflammatory signal; however, little was known about the fate of CP after release. The focus of this work was to better understand how the extracellular space may affect CP on biophysical and biochemical levels. Our approach was to study the molecular-level consequences of Ca(II) binding and tetramerization. We found that the heterotetramer exhibited significant resistance to enzymatic proteolysis compared to the heterodimer. Using NMR spectroscopy, we observed that the dynamics of CP change significantly upon Ca(II) binding small, yet notable, alterations in secondary structure. Finally, we discovered that methionine oxidation of CP inhibited Ca(II)-induced tetramerization, resulting in accelerated proteolysis. Taken together, our studies provided new insights into how CP survives the harsh conditions of the extracellular space, and a mechanism for clearing CP from the extracellular space.en_US
dc.description.statementofresponsibilityby Jules Rabie Stephan.en_US
dc.format.extent322 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleA biophysical and biochemical approach to understanding the interplay between Quaternary structure and function of human calprotectinen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Biological Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc1054246128en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record