MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical role of histone tail entropy in nucleosome unwinding

Author(s)
Parsons, Thomas T. (Thomas Tyler)
Thumbnail
DownloadFull printable version (5.458Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Bin Zhang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As the fundamental packaging unit for the genome, the nucleosome is of central importance for many essential biological processes and has been the focus of numerous research efforts. The dynamics of the nucleosome is of particular interest as it must be balanced to maintain long-lasting genome stability while keeping the DNA accessible to protein molecules. Using a transferable protein-DNA model and advanced sampling techniques, we investigated the stability and dynamics of the nucleosome by determining the free energy cost of its DNA unwinding. Simulation results quantitatively reproduce thermodynamic parameters estimated from single-molecule force spectroscopy experiments, and capture the appearance of a large energetic barrier as the system transitions from the outer to the inner layer of DNA unwinding. Analysis of partially unwound nucleosome configurations at atomic resolution revealed that the transition barrier arises from a delayed loss of contacts between histone tails and the DNA. Surprisingly, there is a significant entropic contribution from the same set of disordered tails that largely offset the energetic barrier. Our study greatly improves the current understanding of nucleosome unwinding by providing detailed mechanistic insights into experimental observations.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 33-36).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118286
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.