Show simple item record

dc.contributor.authorBjörklund, Andreas
dc.contributor.authorKaski, Petteri
dc.contributor.authorWilliams, Richard Ryan
dc.date.accessioned2018-10-01T13:56:55Z
dc.date.available2018-10-01T13:56:55Z
dc.date.issued2018-09
dc.date.submitted2017-12
dc.identifier.issn0178-4617
dc.identifier.issn1432-0541
dc.identifier.urihttp://hdl.handle.net/1721.1/118295
dc.description.abstractWe present two new data structures for computing values of an n-variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q − 1, our first data structure relies on (d + 1)[superscript n+2] tabulated values of P to produce the value of P at any of the q[superscript n] points using O(nqd[superscript 2]) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q − 1, our second data structure assumes that P satisfies a degree-separability condition and relies on (d/s + 1)[superscript n+s] tabulated values to produce the value of P at any point using O(nq[superscript s]sq) arithmetic operations. Our data structures are based on generalizing upper-bound constructions due to Mockenhaupt and Tao (Duke Math J 121(1):35–74, 2004), Saraf and Sudan (Anal PDE 1(3):375–379, 2008) and Dvir (Incidence theorems and their applications, 2012. arXiv:1208.5073) for Kakeya sets in finite vector spaces from linear to higher-degree polynomial curves. As an application we show that the new data structures enable a faster algorithm for computing integer-valued fermionants, a family of self-reducible polynomial functions introduced by Chandrasekharan and Wiese (Partition functions of strongly correlated electron systems as fermionants, 2011. arXiv:1108.2461v1) that captures numerous fundamental algebraic and combinatorial functions such as the determinant, the permanent, the number of Hamiltonian cycles in a directed multigraph, as well as certain partition functions of strongly correlated electron systems in statistical physics. In particular, a corollary of our main theorem for fermionants is that the permanent of an m × m integer matrix with entries bounded in absolute value by a constant can be computed in time 2[superscript m−(√m/ log log m)], improving an earlier algorithm of Björklund (in: Proceedings of the 15th SWAT, vol 17, pp 1–11, 2016) that runs in time 2[superscript m−(√m/ log m)].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-1741638)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-1741615)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00453-018-0513-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleGeneralized Kakeya sets for polynomial evaluation and faster computation of fermionantsen_US
dc.typeArticleen_US
dc.identifier.citationBjörklund, Andreas, et al. “Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants.” Algorithmica, Sept. 2018. © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWilliams, Richard Ryan
dc.relation.journalAlgorithmicaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-19T03:55:13Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsBjörklund, Andreas; Kaski, Petteri; Williams, Ryanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2326-2233
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record