MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated motion planning for robotic assembly of discrete architectural structures

Author(s)
Huang, Yijiang (Architect) Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.206Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Architecture.
Advisor
Caitlin T. Mueller.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Architectural robotics has proven a promising technique for assembling non-standard configurations of building components at the scale of the built environment, complementing the earlier revolution in generative digital design. However, despite the advantages of dexterity and precision, the time investment in solving the construction sequence and associated robotic motion grows increasingly with the topological complexity of the target design. This gap between parametric design and robotic fabrication congests the overall digital design/production process and often confines designers to geometries with standard topology. In the goal of filling this gap, this research presents a new robotic assembly planning framework called Choreo, which eliminates human-intervention for parts that are typically arduous and tedious in architectural robotics projects. Specifically, Choreo takes discrete spatial structure as input, and then assembly sequence, end effector pose, joint configuration, and transition trajectory are all generated automatically. Choreo embodies novelties in both algorithm design and software implementation. Algorithm-wise, a three-layer hierarchical assembly planning framework is proposed, to gradually narrow down the computational complexity along the deep and branched search tree emerging in this combined task and motion planning problem. Implementation-wise, Choreo's system architecture is designed to be modularized and adaptable, with the emphasis on being hardware-agnostic and forging a smooth integration into existing digital design-build workflow. Case studies on fabrication results of robotic extrusion (also called spatial 3D printing) are presented to demonstrate Choreo's power on efficiently generating feasible robotic instructions for assembling shapes with non-standard topology and across the scales.
Description
Thesis: S.M. in Building Technology, Massachusetts Institute of Technology, Department of Architecture, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 71-80).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118487
Department
Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology
Keywords
Architecture.

Collections
  • Building Technology Program Theses
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.