Show simple item record

dc.contributor.advisorNancy G. Leveson.en_US
dc.contributor.authorRising, John M. (John Michael)en_US
dc.contributor.otherMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.date.accessioned2018-10-15T20:23:46Z
dc.date.available2018-10-15T20:23:46Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118525
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-108).en_US
dc.description.abstractThe advent of commercial launch systems has brought about a new age of space launch vehicle design. In order to survive in a competitive market, space launch providers must design systems with new technologies in shorter development times. This changing nature of space launch vehicle design requires a new way to perform safety analysis. Traditional hazard analysis techniques do not deliver adequate insight early in the design process, when most of the safety-related decisions are made. Early design decisions are often made using "lessons-learned" from previous launch systems, rather than interactive feedback from the new vehicle design actually being developed. Furthermore, traditional techniques use reliability theory as their foundation, resulting in the use of excessive design margin and redundancy as the "default" vehicle design choices. This equivocation of safety and reliability may have made sense for simpler launch vehicles of the past, but most modern space launch vehicle accidents have resulted from incorrect software specifications, component interaction accidents, and other design errors independent of the reliability of individual components. The space launch industry needs safety analysis methods and design processes that identify and correct these hazards early in the vehicle design process, when modifications to correct safety issues are more effective and less costly. This work shows how Systems-Theoretic Process Analysis (STPA) can been used as a powerful tool to identify, mitigate, and possibly eliminate hazards throughout the entire space launch vehicle lifecycle. This work begins by reviewing traditional hazard analysis techniques and the changing nature of launch vehicle accidents. Next, it describes how STPA can be integrated into the space launch vehicle lifecycle to design safer systems. It then demonstrates the safety-guided design of a small-lift launch vehicle using STPA. Finally, this work shows how STPA can be used to satisfy regulatory and range safety requirements. The thesis of this work is that integration of STPA into the design of space launch vehicles can make a significant contribution to reducing launch vehicle accidents.en_US
dc.description.statementofresponsibilityby John M. Rising.en_US
dc.format.extent132 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectIntegrated Design and Management Program.en_US
dc.titleSafety-guided design & analysis of space launch vehiclesen_US
dc.title.alternativeSafety-guided design and analysis of space launch vehiclesen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.identifier.oclc1054911354en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record