Show simple item record

dc.contributor.advisorMichael Cusumano.en_US
dc.contributor.authorJain, Chahaten_US
dc.contributor.otherMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.date.accessioned2018-10-15T20:24:35Z
dc.date.available2018-10-15T20:24:35Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118544
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 70-74).en_US
dc.description.abstractArtificial intelligence - making machines intelligent - is a methodology to build, train, and run machines that are capable of making decisions on its own. Artificial intelligence technologies are gaining significant adoption across a wide range of activities in an organization across different industries. This is fueled by increasing focus on data-driven decision-making methods for all kind of tasks (external or internal) in an organization. Venture capital industry - traditional sub-segment of financial services industry - works heavily on human interactions and relationships. Venture capital investments are considered high-risk, high-return asset class. Venture investment decision-making could be optimized by machine learning applied to previous deals, company data, founder data, and more. It is quite possible that a system could analyze founder personalities, company metrics, and team attributes and improve venture capitalist's decision-making. This thesis is an attempt to analyze and breakdown venture capitalist decisions and understand how Artificial Intelligence tools and techniques could be utilized by VCs to improve decision-making in venture capital. By focusing on the decision-making involved in the following eight value chain areas of a venture capital firm - deal sourcing, deal selection, valuation, deal structure, post-investment value added, exits, internal organization of firms, and external organization of firms, we could discover the extent to which artificial intelligence tools and techniques could be used to improve human decision-making in the venture capital industry. Subsequently, we could also identify how artificial intelligence could be practically used in such decision-making scenarios and also the benefits and associated risks involved in using artificial intelligence system in venture capital decision-making.en_US
dc.description.statementofresponsibilityby Chahat Jain.en_US
dc.format.extent80 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectIntegrated Design and Management Program.en_US
dc.titleArtificial intelligence in venture capital industry : opportunities and risksen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.identifier.oclc1055162018en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record