MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interplay of optoelectronic properties and solar cell performance in multidimensional perovskites

Author(s)
Hartono, Noor Titan Putri
Thumbnail
DownloadFull printable version (2.788Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Tonio Buonassisi.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Perovskite is an emerging material for photovoltaic application that has reached 22.7% efficiency to date. Despite its excellent properties such as defect tolerance and long carrier lifetime, the high-performing perovskite material, methylammonium lead iodide (MAPI), which has 3D structure, is still unstable. Recent studies have hinted at the possibility of shifting focus from 3D to lower dimensional perovskite structures because lower dimensional structures are more environmentally stable for a longer period than the 3D analogues. We propose a detailed study where PbI₂ is used as the backbone and A-site cations are alloyed with various combinations: methylammonium, dimethylammonium, iso-propylammonium, and t-butylammonium. We measure the perovskite solar cell devices' performance and characterize the solar absorber to understand the optoelectronic properties. It is shown that the addition of large A-site cations change the structures into lower dimension, which increases the bandgap and decreases device performance properties such as efficiency, open-circuit voltage, and short-circuit current. Hence, there is a trade-off between having more stable perovskite and high-performance cell in using large A-site organic cations.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 68-72).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118669
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.