Show simple item record

dc.contributor.advisorJulie A. Shah and John J. Leonard.en_US
dc.contributor.authorSanneman, Lindsay (Lindsay Michelle)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2018-10-22T18:27:47Z
dc.date.available2018-10-22T18:27:47Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118674
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-105).en_US
dc.description.abstractIntegrated supply chain models provide an opportunity to optimize costs and production times in the supply chain while taking into consideration the many steps in the production and delivery process and the many constraints on time, shared resources, and throughput capabilities. In this work, mixed integer linear programming (MILP) models are developed to describe the manufacturing plant, consolidation transport, and distribution center components of the supply chain. Initial optimization results are obtained for each of these models. Additionally, an integrated model including a single plant, multiple consolidation transport vehicles, and a single distribution center is formulated and initial results are obtained. All models are implemented and optimized for their given objectives using a standard MILP solver. Initial optimization results suggest that it is intractable to solve problems of relevant scale using standard MILP solvers. The natural hierarchical structure in the supply chain problem lends itself well to application of decomposition techniques intended to speed up solution time. Exact techniques, such as Benders decomposition, are explored as a baseline. Classical Benders decomposition is applied to the manufacturing plant model, and results indicate that Benders decomposition on its own will not improve solve times for the manufacturing plant problem and instead leads to longer solve times for the problems that are solved. This is likely due to the large number of discrete variables in manufacturing plant model. To improve upon solve times for the manufacturing plant model, an approximate decomposition technique is developed, applied to the plant model, and evaluated. The approximate algorithm developed in this work decomposes the problem into a three-level hierarchical structure and integrates a heuristic approach at two of the three levels in order to solve abstracted versions of the larger problem and guide towards high-quality solutions. Results indicate that the approximate technique solves problems faster than those solved by the standard MILP solver and all solutions are within approximately 20% of the true optimal solutions. Additionally, the approximate technique can solve problems twice the size of those solved by the standard MILP solver within a one hour timeframe.en_US
dc.description.statementofresponsibilityby Lindsay Sanneman.en_US
dc.format.extent105 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDecomposition techniques for large-scale optimization in the supply chainen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1057362115en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record