MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multidisciplinary research in Raman spectroscopy, phase imaging and their applications in heat transfer

Author(s)
Zhang, Lenan
Thumbnail
DownloadFull printable version (19.31Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Evelyn N. Wang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent advances in micro-to-nanoscale heat transfer have led to tremendous research interests in the high spatial resolution thermal characterization techniques. Although great improvement has been made in temperature probe, heat flux measurement and thermophysical properties characterization especially for solid-state materials and structures, precision thermal characterization is still challenging due to the presence of multiphysics coupling, the limitation of resolution and the restriction of materials that can be studied. The goal of this thesis is to explore more possible opportunities for advanced thermal measurement techniques. Specifically, this thesis mainly focuses on the development of Raman spectroscopy and phase imaging and demonstrates their applications to micro-to-nanoscale heat transfer. Due to the superior spatial resolution and the non-contact nature, micro-Raman spectroscopy has been widely applied for local temperature measurement. However, the presence of multiphysics coupling to the optical phonon modes and the necessity to have Raman signature for the test materials limit the application of micro-Raman thermometry to simple solid-state devices. In this thesis, we present several advancements which extend the capability of Raman spectroscopy to multiphysics coupling systems, Raman-inactive materials and nanoscale thermometry. Specifically, we simultaneously measured the temperature, stress and electric field in GaN HEMTs and the linear thermal expansion coefficient of MoS2 monolayer flake using the multiple peaks fit method. We presented a method to interface micro-Raman system with a phase change heat transfer test setup and used this integrated setup to study the thin film evaporation on structured surfaces. To measure the temperature of Raman-inactive materials, we used nanoparticles as the Raman agent. We measured the temperature distribution of the optically transparent and thermally insulated silica aerogel. Additionally, this thesis also proposed a concept of nanoscale Raman thermometry using plasmon enhanced gold-silicon nanoparticles. The electric field concentration properties and in situ measurement capability were proven using simulation and experiments. Attributed to the high sensitivity to geometrical structures and refractive index of materials, phase imaging techniques were useful for weakly scattering systems. Although the property of imaging transparent materials has been well-demonstrated, the application of nanoscale detection using phase imaging is lacking. In this thesis, we developed robust phase imaging method based on transport of intensity equation and depth scanning technique and proved the ultrahigh sensitivity of phase in nanoscale inspection. This developed technology was validated through a number of simulations and experiments, including detecting the deep subwavelength defects on 9 nm semiconductor wafers. The thesis finally shows the opportunity of using phase imaging to study micro-to-nanoscale phase change heat transfer. The dynamic interactions and growth of condensing droplets were investigated using the phase imaging enhanced environmental scanning electron microscopy.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 115-123).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118680
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.