Show simple item record

dc.contributor.advisorYuming Liu.en_US
dc.contributor.authorMiao, Sha, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2018-10-22T18:46:33Z
dc.date.available2018-10-22T18:46:33Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118725
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 165-176).en_US
dc.description.abstractRapidly rising global energy demand coupled with dwindling conventional oil resources has pushed unconventional oil, such as heavy oil, to become one of the most important future energy resources. However, design and operation of pipelines to transport heavy-oil/gas flows have raised new challenges associated with remarkably different flow regime transitions compared to conventional low-viscosity-oil/low-density-gas flows. Many traditional flow regime models for these oil/gas flows result in O(1) prediction errors when applied to high-viscosity-oil/high-density-gas flows because they fail to account for the complex change in physics and scales that occur as the fluid properties substantially change. Therefore, understanding the mechanisms that cause flow-regime transition for these types of flows is of critical importance to the development of physics-based models allowing for the creation of more robust and cost effective designs. The work described in this thesis focuses on investigating the fundamental mechanisms governing the initial growth and nonlinear evolution of interfacial waves leading to slugging in concurrent high-viscosity (laminar) liquid/high-density(turbulent) gas two-phase flows in horizontal channels/pipes. We first develop a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For the application of slug development with turbulent gas and laminar liquid, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver in FCIF. We perform a series of validations on this method. The results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.en_US
dc.description.statementofresponsibilityby Sha Miao.en_US
dc.format.extent176 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleMechanistic study of slug formation and evolution in high-viscosity-liquid/High-density-gas multiphase flows in channels/pipesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1057122425en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record