MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A high-speed robotic disassembly system for the recycling and reuse of cellphones

Author(s)
Figueiredo, Wilhelmena
Thumbnail
DownloadFull printable version (9.406Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Kamal Youcef-Toumi.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hundreds of millions of cellphones are thrown away every year, creating a market for large-scale recycle and reuse. We present a low-cost robot that can disassemble cellphone components in a nondestructive way and be distributed widely. The goal of this robot is to accelerate the recovery of millions of dollars worth of components and materials from the disposed cellphones. The disassembly of cellphones was reduced to primitive operations and the most important was determined to be prying. The prototype was tested on disconnecting flat flexible cable connectors which were universal and traditionally difficult for machines to remove. Multiple end effectors were designed, and different combinations of end effectors and motions were compared showing the optimum combination for prying is determined to be a compliant tool with a moving pivot motion. It allowed high success rate, minimal damage and good robustness against positioning errors. The prying and positioning of the machine was modeled and compared to experimental data to guide design and allow for generalization. Lastly, a decision-making system was designed specifically to work at high speeds and with multiple types of uncertainty.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 79-81).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118726
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.