Show simple item record

dc.contributor.advisorDaniela Rus and Amos Winter.en_US
dc.contributor.authorRomanishin, John (John William)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2018-11-15T16:36:28Z
dc.date.available2018-11-15T16:36:28Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119098
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 79-85).en_US
dc.description.abstractThis thesis details the development of the 3D M-Blocks modular robot system. Modular self-reconfigurable robots (MSRR) are robotic systems which contain many modules that can form and break connections with other modules, and move on a lattice of other modules in order to form different configurations. The 3D M-Blocks is a new system which attempts to investigate the feasibility of using inertial actuation from reaction wheels in order to pivot modules on a 3D lattice. Many existing systems described in related literature are able to exhibit reconfiguration, but usually these systems are only able to do so under limited circumstances, e.g. they only work in 2 dimensions or in the absence of gravity. The 3D M-blocks is one of the only systems which is able to move modules according to a general lattice movement model in full three dimensional space under the effects of gravity. The 3D M-Blocks rotate relative to one another through the use of temporary magnetic hinges, and form bonds with each other through the use of permanent magnets. Rules describing the movement framework under which the modules move, called the Pivoting Cube Model (PCM), are discussed in depth. Each 50 mm 3D M-Block module contains all of the components necessary to operate autonomously and communicate over WiFi. Each module contains a cubic frame which supports the rotation and magnetic bonding with neighbors, and which holds the core robot assembly, including an inertial actuator and electronics. The inertial actuator is a reaction wheel with a fast acting band brake which is used to generate pulses of torque sufficient to induce lattice pivoting motions. Experiments characterizing the performance of the inertial actuator and the magnetic hinges are described. Additionally, experiments validating individual lattice movements demonstrate the feasibility of this approach to general 3D reconfiguration. Experiments describing modules modules individually and as groups are also presented.en_US
dc.description.statementofresponsibilityby John William Romanishin.en_US
dc.format.extent87, 4 unnumbered pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleM-Blocks : three dimensional modular self-reconfigurable robotsen_US
dc.title.alternativeThree dimensional modular self-reconfigurable robotsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1059464121en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record