Show simple item record

dc.contributor.authorLi, Shuai
dc.contributor.authorSinha, Ayan T
dc.contributor.authorLee, Justin
dc.contributor.authorBarbastathis, George
dc.date.accessioned2018-11-16T15:37:22Z
dc.date.available2018-11-16T15:37:22Z
dc.date.issued2018-02
dc.identifier.isbn9781510614918
dc.identifier.isbn9781510614925
dc.identifier.urihttp://hdl.handle.net/1721.1/119144
dc.description.abstractDeep learning has been proven to achieve ground-breaking accuracy in various tasks. In this paper, we implemented a deep neural network (DNN) to achieve phase retrieval in a wide-field microscope. Our DNN utilized the residual neural network (ResNet) architecture and was trained using the data generated by a phase SLM. The results showed that our DNN was able to reconstruct the profile of the phase target qualitatively. In the meantime, large error still existed, which indicated that our approach still need to be improved.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology (SMART)en_US
dc.description.sponsorshipUnited States. Department of Energy. Computational Science Graduate Fellowship Program (DE-FG02-97ER25308)en_US
dc.description.sponsorshipUnited States. Intelligence Advanced Research Projects Activityen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2289056en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleQuantitative phase microscopy using deep neural networksen_US
dc.typeArticleen_US
dc.identifier.citationLi, Shuai, et al. “Quantitative Phase Microscopy Using Deep Neural Networks.” Quantitative Phase Imaging IV, 27 January, - February 1, 2018, San Francisco, California, edited by Gabriel Popescu and YongKeun Park, SPIE, 2018, p. 84. © SPIE.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLi, Shuai
dc.contributor.mitauthorSinha, Ayan T
dc.contributor.mitauthorLee, Justin
dc.contributor.mitauthorBarbastathis, George
dc.relation.journalQuantitative Phase Imaging IVen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-10-29T19:37:38Z
dspace.orderedauthorsLi, Shuai; Sinha, Ayan; Lee, Justin; Barbastathis, Georgeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7836-0431
dc.identifier.orcidhttps://orcid.org/0000-0002-4140-1404
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record