Show simple item record

dc.contributor.advisorKerri L. Cahoy.en_US
dc.contributor.authorRiesing, Kathleen Michelleen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2018-11-28T15:25:18Z
dc.date.available2018-11-28T15:25:18Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119269
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 113-125).en_US
dc.description.abstractSmall satellite technical capabilities continue to grow and launch opportunities are rapidly expanding. Several commercial constellations of small satellites for Earth observation and communications are making their way onto orbit, increasing the need for high bandwidth data downlink. Laser communications (lasercom) has the potential to achieve high data rates with a reduction in power and size compared to radio frequency (RF) communications, while simultaneously avoiding the significant regulatory burden of RF spectrum allocation. Lasercom benefits from high carrier frequencies and narrow beamwidths, but the resulting challenge is to precisely point these beams between transmit and receive terminals. Arcsecond to sub-arcsecond pointing is required from both the space terminal and the ground station. While existing lasercom ground stations have primarily utilized professional telescopes at observatory-class facilities, making optical ground stations more affordable and transportable is a key enabler for expanding lasercom to small satellites and new applications, as well as establishing networks to mitigate the effects of weather. We describe the development of the Massachusetts Institute of Technology Portable Telescope for Lasercom (MIT-PorTeL) utilizing an amateur telescope augmented with an externally mounted receiver assembly. The ground station has a 28 cm aperture and utilizes a star tracker for automated calibration. The ground station reduces mass by at least 10x and cost by at least 100 x over existing optical ground stations. We present a ground station architecture that enables deployment in less than one hour and that is capable of tracking satellites in low-Earth orbit. We describe the receiver assembly and fine pointing system that enables arcseconds-level pointing accuracy. Finally, we present results from testing the ground station on the roof of an MIT building tracking a star and tracking the International Space Station.en_US
dc.description.statementofresponsibilityby Kathleen Michelle Riesing.en_US
dc.format.extent125 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titlePortable optical ground stations for satellite communicationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1061557727en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record