Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorZhuo, Ying Daisyen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2018-11-28T15:25:55Z
dc.date.available2018-11-28T15:25:55Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119284
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 165-173).en_US
dc.description.abstractRecent advances in machine learning and optimization hold much promise for influencing real-world decision making, especially in areas such as health care where abundant data are increasingly being collected. However, imperfections in the data pose a major challenge to realizing their full potential: missing values, noisy observations, and unobserved counterfactuals all impact the performance of data-driven methods. In this thesis, with a fresh perspective from optimization, I revisit some of the well-known problems in statistics and machine learning, and develop new methods for prescriptive analytics. I show examples of how common machine learning tasks, such as missing data imputation in Chapter 2 and classication in Chapter 3, can benet from the added edge of rigorous optimization formulations and solution techniques. In particular, the proposed opt.impute algorithm improves imputation quality by 13.7% over state-of-the-art methods, as averaged over 95 real data sets, which leads to further performance gains in downstream tasks. The power of prescriptive analytics is shown in Chapter 4 by our approach to personalized diabetes management, which identifies response patterns using machine learning and individualizes treatments via optimization. These newly developed machine learning algorithms not only demonstrate improved performance in large-scale experiments, but are also applied to solve the problems in health care that motivated them. Our simulated trial for diabetic patients in Chapter 4 demonstrates a clinically relevant reduction in average hemoglobin A1c levels compared to current practice. Finally, when predicting mortality for cancer patients in Chapter 5, applying opt.impute on missing data along with the cutting-edge algorithm Optimal Classication Tree on a rich data set prepared from electronic medical records, we are able to accurately risk stratify patients, providing physicians with interpretable insights and valuable risk estimates at time of treatment decisions and end-of-life planning.en_US
dc.description.statementofresponsibilityby Ying Daisy Zhuo.en_US
dc.format.extent173 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleNew algorithms in machine learning with applications in personalized medicineen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1065541937en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record