dc.contributor.advisor | Richard E. Stoner and Paulo C. Lozano. | en_US |
dc.contributor.author | Wu, Nancy Y. (Nancy Yue) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2018-11-28T15:41:50Z | |
dc.date.available | 2018-11-28T15:41:50Z | |
dc.date.copyright | 2017 | en_US |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/119294 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 83-85). | en_US |
dc.description.abstract | Current state-of-the-art atomic clocks span the range from large accurate fountain clocks such as the NIST-F2 to relatively small inaccurate chip scale clocks. Small clocks with higher accuracy could greatly expand the range of applications for precision timekeeping, and enable cheaper implementation of existing applications. This type of clock may be realized by use of optical Raman interferometry based on pulsed interrogation of cold atoms. However, this method suffers from serious systematic error sources, e.g., AC Stark shift and Zeeman shift, which alter the atomic resonance frequency. A new method based on adiabatic rapid passage (ARP) has been recently demonstrated at Draper which has significantly reduced phase sensitivity to differential AC Stark shift. It is found that compared to standard Raman, use of ARP enhances timekeeping stability by a factor of three with stability of 2 x 10⁻¹² at 100 seconds. Increasing data rate may also improve short term stability. With all of the above improvements, ARP enhances short term fractional stability to 7 x 10⁻¹² at one second. | en_US |
dc.description.statementofresponsibility | by Nancy Y. Wu. | en_US |
dc.format.extent | 85 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | Stability enhancement of atomic timekeeping using Raman adiabatic rapid passage | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.identifier.oclc | 1061559018 | en_US |