Show simple item record

dc.contributor.advisorRichard E. Stoner and Paulo C. Lozano.en_US
dc.contributor.authorWu, Nancy Y. (Nancy Yue)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2018-11-28T15:41:50Z
dc.date.available2018-11-28T15:41:50Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119294
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 83-85).en_US
dc.description.abstractCurrent state-of-the-art atomic clocks span the range from large accurate fountain clocks such as the NIST-F2 to relatively small inaccurate chip scale clocks. Small clocks with higher accuracy could greatly expand the range of applications for precision timekeeping, and enable cheaper implementation of existing applications. This type of clock may be realized by use of optical Raman interferometry based on pulsed interrogation of cold atoms. However, this method suffers from serious systematic error sources, e.g., AC Stark shift and Zeeman shift, which alter the atomic resonance frequency. A new method based on adiabatic rapid passage (ARP) has been recently demonstrated at Draper which has significantly reduced phase sensitivity to differential AC Stark shift. It is found that compared to standard Raman, use of ARP enhances timekeeping stability by a factor of three with stability of 2 x 10⁻¹² at 100 seconds. Increasing data rate may also improve short term stability. With all of the above improvements, ARP enhances short term fractional stability to 7 x 10⁻¹² at one second.en_US
dc.description.statementofresponsibilityby Nancy Y. Wu.en_US
dc.format.extent85 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleStability enhancement of atomic timekeeping using Raman adiabatic rapid passageen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1061559018en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record