Show simple item record

dc.contributor.advisorJosephine V. Carstensen.en_US
dc.contributor.authorEstrada, Diana, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2018-11-28T15:42:53Z
dc.date.available2018-11-28T15:42:53Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119316
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 61-64).en_US
dc.description.abstractIn the aftermath of a natural disaster, all efforts are dedicated to a common goal: repairing and bringing the affected communities back to their fully functioning condition. However, it is frequently encountered that infrastructure and roads providing access to these communities are also damaged. As this can slow down the community response time significantly, there exists a need for light, easy to install, and effective temporary infrastructure for immediate restoration of communication. This thesis presents a new design concept for a deployable bridge structure composed of scissor-like translational units. The proposed structure satisfies the deployment constraints and the stress limits determined by AASHTO LRFD Bridge Design Specifications. The used design approach uses multiple existing deployable geometries and performs a comparative analysis between the different systems. Given the particularity of SLE units, a standard finite element analysis method was enriched to match our conditions and enhance the accuracy of the modeling and analysis. This includes the implementation of master/slave node constraints and zero length rotational springs at the element nodes. The design problem is formulated as a formal optimization problem with a nested equilibrium condition. Our objective function minimizes the total weight of the structure for a deployable bridge subjected to H15 design loads and stress limits delineated by AASHTO. A design A design exploration is performed to compare the best designs for different bridge geometries, angles of element inclination and member cross sectional areas. The optimization problem is solved using a genetic algorithm which, at each iteration, uses our beam finite element analysis to check that structural equilibrium is satisfied. Given the potential lack of resources after a natural disaster, providing a light weight extendible structure which would therefore require less force and resources for installation, can have a positive impact in the recovery process.en_US
dc.description.statementofresponsibilityby Diana Estrada.en_US
dc.format.extent64 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleConceptual design of a deployable vehicular bridge structure using shape and geometric optimization for post disaster relief applicationsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc1062470725en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record