Show simple item record

dc.contributor.advisorHarold Hemond and Kathleen Vandiver.en_US
dc.contributor.authorHarvey, Abby (Abigail P.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.coverage.spatialn-us-meen_US
dc.date.accessioned2018-11-28T15:42:56Z
dc.date.available2018-11-28T15:42:56Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119317
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 58-61).en_US
dc.description.abstractLead and arsenic in drinking water are a health risk to communities throughout the world; lead can be a problem in houses with old piping systems with either lead piping or 50/50 lead solder, and groundwater in Maine contains high arsenic concentrations. This study sought to determine the prevalence and sources of arsenic and lead in the drinking water of Eastport, Perry, and Pleasant Point, Maine. Citizens of these towns submitted water samples from their homes, and arsenic and lead were measured in these samples. Each citizen submitted two samples: one where water stood in the pipes for a minimum of six hours, and another where the tap was flushed for 2+ minutes before sample collection. The primary water sources in the region were municipal water, from the Passamaquoddy Water District (PWD), and well water from private wells. Water samples were also collected from the source waters of the municipal water system, the Passamaquoddy Water District, and immediately following water treatment to determine sources of lead in the municipal system. Lead concentrations were found to be below the Environment Protection Agency (EPA) action level of 15ppb throughout the municipal system, and less than 1% of PWD samples exceeded the action level for lead in the standing samples. Overall, including houses with wells, 2% of houses exceeded the EPA action level in standing samples, and these houses are inferred to contain high lead levels in their piping. Arsenic levels in well water samples were found to exceed the EPA Guideline of 10[mu]g/L in 15% of samples, and did not depend on bedrock type, pH, or well depth, suggesting that bedrock heterogeneity and fracture geometry plays a large role in arsenic concentrations in this region.en_US
dc.description.statementofresponsibilityby Abby Harvey.en_US
dc.format.extent93 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleSources of arsenic and lead in drinking water of Eastport, Perry, and Pleasant Point, Maineen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc1062497585en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record