Show simple item record

dc.contributor.advisorHeidi M. Nepf.en_US
dc.contributor.authorRosendo, Kali Men_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2018-11-28T15:43:03Z
dc.date.available2018-11-28T15:43:03Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119320
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 45-46).en_US
dc.description.abstractFloating Treatment Islands (FTIs) have been studied as a method to mitigate the risks associated with high nutrient levels in contaminated water. The goal of this project was to compare fractional treatment rates by a series of FTIs located at the edge of a channel, allowing the center channel to remain clear. Experiments were performed using a scaled-down model floating treatment island (FTI) with a 19 x 24.5 cm x 10 cm root zone modeled using 3.6 mm diameter dowel rods (n = 75/135 cm 2, low flow blockage) attached to the inside wall of a 1.2 m wide x 16 m long flume. Three cases were considered, with four FTIs spaced at various distances based on the length scale L of the FTI: the closest spacing had each FTI located 2L downstream of the last, the mid-range spacing were placed 4L apart, and the farthest spacing had each FTI 8L past the last. Based on the cross-sectionally averaged flow rates measured at the leading and trailing edges of the root zone, treatment rates within the root zone were estimated using a first-order kinetic model, and an iterative method was used to solve for the fractional treatment by the series of FTIs. This paper explores the effects of various parameters on treatment, including flow rates and velocity recovery, biological uptake rate, and island size. Finally, the researcher evaluated which setup provided the most treatment for a given number of treatment islands. It was found that the 8L spacing provided the best treatment, significantly more than the 4L or 2L spacing for k < 10 day⁻¹ according to the results of a two-sample t-test. For a set of 8L spaced FTIs with an uptake rate of 1 day⁻¹ with a cross-sectional coverage of 13.6%, it would be possible to reduce the upstream nutrient concentration by 25% over a channel length of roughly 3.5 km, 50% over a channel length of 10 km, and 90% over a channel length of approximately 32 km. These treatment rates could have the potential to mitigate the risk of eutrophication in sufficiently long channels.en_US
dc.description.statementofresponsibilityby Kali M. Rosendo.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleFloating Treatment Island configuration for optimum nutrient removalen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc1062517242en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record