MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The enriched subspace iteration method and wave propagation dynamics with overlapping finite elements

Author(s)
Kim, Ki-Tae, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (16.15Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Klaus-Jürgen Bathe.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In structural dynamic problems, the mode superposition method is the most widely used solution approach. The largest computational effort (about 90% of the total solution time) in the mode superposition method is spent on calculating the required eigenpairs and it is of critical importance to develop effective eigensolvers. We present in this thesis a novel solution scheme for the generalized eigenvalue problem. The scheme is an extension of the Bathe subspace iteration method and a significant reduction in computational time is achieved. For the solution of wave propagation problems, the finite element method with direct time integration has been extensively employed. However, using the traditional finite element solution approach, accurate solutions can only be obtained of rather simple one-dimensional wave propagation problems. In this thesis, we investigate the solution characteristics of a solution scheme using 'overlapping finite elements', disks and novel elements, enriched with harmonic functions and the Bathe implicit time integration method to solve transient wave propagation problems. The proposed solution scheme shows two important properties: monotonic convergence of calculated solutions with decreasing time step size and a solution accuracy almost independent of the direction of wave travel through uniform, or distorted, meshes. These properties make the scheme promising to solve general wave propagation problems in complex geometries involving multiple waves.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 133-137).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119346
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.