Show simple item record

dc.contributor.authorMykulowycz, Nicholas M.
dc.contributor.authorShim, Joseph
dc.contributor.authorFontana, Richard
dc.contributor.authorSchmitt, Peter
dc.contributor.authorRoberts, Andrew
dc.contributor.authorKetkaew, Jittisa
dc.contributor.authorShao, Ling
dc.contributor.authorChen, Wen
dc.contributor.authorBordeenithikasem, Punnathat
dc.contributor.authorMyerberg, Jonah S.
dc.contributor.authorFulop, Ric
dc.contributor.authorVerminski, Matthew D.
dc.contributor.authorSachs, Emanuel M.
dc.contributor.authorSchroers, Jan
dc.contributor.authorGibson, Michael A.
dc.contributor.authorChiang, Yet-Ming
dc.contributor.authorSchuh, Christopher A
dc.contributor.authorHart, Anastasios John
dc.date.accessioned2018-12-04T18:08:44Z
dc.date.available2018-12-04T18:08:44Z
dc.date.issued2018-12-04
dc.identifier.issn1369-7021
dc.identifier.urihttp://hdl.handle.net/1721.1/119419
dc.description.abstractWhereas 3D printing of thermoplastics is highly advanced and can readily create complex geometries, 3D printing of metals is still challenging and limited. The origin of this asymmetry in technological maturity is the continuous softening of thermoplastics with temperature into a readily formable state, which is absent in conventional metals. Unlike conventional metals, bulk metallic glasses (BMGs) demonstrate a supercooled liquid region and continuous softening upon heating, analogous to thermoplastics. Here we demonstrate that, in extension of this analogy, BMGs are also amenable to extrusion-based 3D printing through fused filament fabrication (FFF). When utilizing the BMGs’ supercooled liquid behavior, 3D printing can be realized under similar conditions to those in thermoplastics. Fully dense and amorphous BMG parts are 3D printed in ambient environmental conditions resulting in high-strength metal parts. Due to the similarity between FFF of thermoplastics and BMGs, this method may leverage the technology infrastructure built by the thermoplastic FFF community to rapidly realize and proliferate accessible and practical printing of metals.en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.mattod.2018.07.001en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.title3D printing metals like thermoplastics: Fused filament fabrication of metallic glassesen_US
dc.typeArticleen_US
dc.identifier.citationGibson, Michael A., et al. “3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses.” Materials Today 21, no. 7 (September 2018): 697–702. © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorGibson, Michael A.
dc.contributor.mitauthorChiang, Yet-Ming
dc.contributor.mitauthorSchuh, Christopher A
dc.contributor.mitauthorHart, Anastasios John
dc.relation.journalMaterials Todayen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-29T18:47:58Z
dspace.orderedauthorsGibson, Michael A.; Mykulowycz, Nicholas M.; Shim, Joseph; Fontana, Richard; Schmitt, Peter; Roberts, Andrew; Ketkaew, Jittisa; Shao, Ling; Chen, Wen; Bordeenithikasem, Punnathat; Myerberg, Jonah S.; Fulop, Ric; Verminski, Matthew D.; Sachs, Emanuel M.; Chiang, Yet-Ming; Schuh, Christopher A.; John Hart, A.; Schroers, Janen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1973-1703
dc.identifier.orcidhttps://orcid.org/0000-0002-0833-7674
dc.identifier.orcidhttps://orcid.org/0000-0001-9856-2682
dc.identifier.orcidhttps://orcid.org/0000-0002-7372-3512
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record