Show simple item record

dc.contributor.advisorWojciech Matusik and Antonio Torralba.en_US
dc.contributor.authorLi, Anying, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-12-11T20:39:05Z
dc.date.available2018-12-11T20:39:05Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119533
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 65-69).en_US
dc.description.abstractDriving is a singularly complex task that humans manage to perform successfully day in and day out, guided only by what their eyes can see. Given how prevalent, complex, and not to mention dangerous driving is, it's surprising that we don't really understand how drivers actually use vision to drive. The release of a large scale driving dataset with eye tracking data, DrEyeVe [1], makes analyzing the role of vision feasible. In this thesis, we 1) study the impact of various external features on driver attention, and 2) present a two-path deep-learning model that exploits both static and dynamic information for modeling driver gaze. Our model shows promising results against state-of-the-art saliency models, especially on sequences when the driver is not just looking straight ahead on the road. This model enables us to estimate important regions that the driver should be aware of, and potentially allows an automatic driving assistant to alert drivers of hazards on the road they haven't seen yet.en_US
dc.description.statementofresponsibilityby Anying Li.en_US
dc.format.extent69 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLearning driver gazeen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1066741159en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record