Show simple item record

dc.contributor.advisorHoward E. Shrobe and Hamed Okhravi.en_US
dc.contributor.authorGil, Ronald, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-12-11T20:39:47Z
dc.date.available2018-12-11T20:39:47Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119551
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 59-64).en_US
dc.description.abstractIn this thesis, we explore full memory safety and the various intricacies involved. We analyze existing memory safety techniques in both hardware and software and their many different goals. This task involves determining the limits of the protections guaranteed by these different protection systems, regardless of whether they were explicitly or implicitly stated. It is demonstrated that the common software technique of protecting only allocation bounds does not provide nearly enough of a barrier for attackers. Then, we go beyond particular schemes and examine the limitations of languages, C in particular. We discover many corner cases and ambiguities that prevent even the best possible protection system from providing full memory safety in the context of the C language specification. We also collect some results for the prevalence of these issues, present approaches to further analyze them, and consider how they might extend into other languages or systems.en_US
dc.description.statementofresponsibilityby Ronald Gil.en_US
dc.format.extent64 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleThe undefined quest for full memory safetyen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1076273115en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record