Show simple item record

dc.contributor.advisorDuane S. Boning.en_US
dc.contributor.authorMartinez, Germainen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-12-11T20:40:26Z
dc.date.available2018-12-11T20:40:26Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119567
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 123-127).en_US
dc.description.abstractPhotonic systems are being developed with extensions to existing CMOS processes, and are growing in complexity. Silicon photonics designs are evaluated in simulation using similar methods to those used for CMOS transistor and circuit designs; simulation models for common silicon-based photonics structures and devices currently exist and are used to design larger photonic systems. However, these photonics models are often not constructed with manufacturing variations in mind. This thesis presents methods for creating simulation models for nanophotonic devices that take systematic and random variations from manufacturing into account. Factorial experiment design is used to explore the eect of process variations on photonic device performance. Corner models are constructed using the results from experiment design and capture worst-case variations. The response surface modeling method is employed to develop parameterized compact models. Example variation-aware compact models are generated using these methods for the directional coupler and the Y-branch, two passive devices widely used in silicon photonics. The use of these models is demonstrated through corner and statistical variation analyses of a simple Mach-Zehnder interferometer photonic circuit composed of the directional coupler and Y-branch devices.en_US
dc.description.statementofresponsibilityby Germain Martinez.en_US
dc.format.extent127 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleMethods for compact modeling of process variations in silicon photonics devicesen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1076274956en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record