MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A MEMS magnetic-based vibrational energy harvester

Author(s)
Shin, Abraham
Thumbnail
DownloadFull printable version (3.221Mb)
Alternative title
Micro Electronic Mechanical Systems magnetic-based vibrational energy harvester
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Jeffrey H. Lang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents the design, fabrication, and testing of a MEMS vibration energy harvester that is to operate at low frequency to power machine health monitoring. The energy harvester converts external vibration into electricity via the Lorentz-force by allowing a permanent magnet, which acts as an inertial mass, to oscillate between coils wound above and below the magnet. Careful analysis and design of a fabricated silicon-based suspension, which holds the magnet, determines the important mechanical properties of the harvester, such as the internal loss and the selectivity of a single translational vibration. The harvester is designed to provide maximum power output at 0.5 g external acceleration at 50 Hz while its size is constrained to be less than 1 cm3. By incorporating mechanical and electromagnetic analyses, a full-system optimization is performed to determine the optimal dimensional parameters of the harvester and to estimate the power output to be observed. The fabricated and assembled energy harvester is tested and observed to produce an open-circuit voltage of 100 mV and a power output of 165 [mu]W at the resonance frequency of 45.7 Hz. The harvester's power density is 382 [mu]W/cm3, which is higher than the highest reported value of 222 [mu]W/cm3 for existing MEMS energy harvesters, but the performance of the design presented in this thesis may be improved with some changes to the current design.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (page 81).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119573
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.