MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weighting protein ensembles with Bayesian statistics and small-angle X-ray scattering data

Author(s)
Schmidt, Molly A
Thumbnail
DownloadFull printable version (949.4Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Collin M. Stultz.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Intrinsically Disordered Proteins (IDPs) are involved in a number of neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Their disordered nature allows them to sample many different conformations, so their structures must be represented as ensembles. Typically, structural ensembles for IDPs are constructed by generating a set of conformations that yield ensemble averages that agree with pre-existing experimental data. However, as the number of experimental constraints is usually much smaller than the degrees of freedom in the protein, the ensemble construction process is under-determined, meaning there are many different ensembles that agree with a given set of experimental observables. The Variational Bayesian Weighting program uses Bayesian statistics to fit conformational ensembles, and in doing so also quantifies the uncertainty in the underlying ensemble. The present work sought to introduce new functionality to this program, allowing it to use data obtained from Small-Angle X-ray Scattering.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 52-54).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119574
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.