dc.contributor.advisor | Jeffrey H. Lang and Paul A. Ward. | en_US |
dc.contributor.author | Oliva, Alexander | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2018-12-11T20:40:55Z | |
dc.date.available | 2018-12-11T20:40:55Z | |
dc.date.copyright | 2018 | en_US |
dc.date.issued | 2018 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/119580 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 193-197). | en_US |
dc.description.abstract | This thesis analyzes, designs and tests circuit topologies for simultaneous energy harvesting from solar and 915-MHz RF energy sources. An important design objective is to minimize system weight while maximizing output power and operating time for applications in the sub-170-mg and single-mW ranges. The resulting energy harvesting system uses a unique approach of categorizing the harvesters as primary and auxiliary harvesters due to the power levels of each in relation to the high load demand. This work results in a 162-mg supercapacitor-powered system capable of powering a 2-V load at up to approximately 2-3 mW and a 150-mg battery-powered system capable of powering a 2-V load at up to 6 mW. The auxiliary RF harvester uses a fully-integrated charge pump to impedance-match to a rectenna with greater than 94% matching. The parasitic models developed for the RF harvester show errors less than 1.4% in the measured system. | en_US |
dc.description.statementofresponsibility | by Alexander Oliva. | en_US |
dc.format.extent | 197 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Multi-source energy harvesting for lightweight applications | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 1076359593 | en_US |