MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning to draw vector graphics : applying generative modeling to font glyphs

Author(s)
Zhong, Kimberli
Thumbnail
DownloadFull printable version (3.326Mb)
Alternative title
Applying generative modeling to font glyphs
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Frédo Durand.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Today, designers work in tandem with computerized tools to create stylized graphic designs, diagrams, and icons. In this work, we explore the applications of generative modeling to the design of vectorized drawings, with a focus on font glyphs. We establish a data-driven approach for creating preliminary graphics upon which designers can iterate. To accomplish this, we present an end-to-end pipeline for a supervised training system on Scalable Vector Graphics (SVGs) that learns to reconstruct training data and produce similar but novel examples. We demonstrate its results on selected characters using a Google Fonts dataset of 2552 font faces. Our approach uses a variational autoencoder to learn sequences of SVG drawing commands and is capable of both recreating ground truth inputs and generating unseen, editable SVG outputs. To investigate improvements to model performance, we perform two experiments: one on the effects of various SVG feature encodings on generated outputs, and one on a modified architecture that explicitly encodes style and class separately for multi-class generation.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 67-68).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119692
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.