MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Technoeconomic analysis of perovskite photovoltaic manufacturing for powering telecommunications Towers

Author(s)
Xiao, Justin (Justin T.)
Thumbnail
DownloadFull printable version (6.345Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In recent years, metal halide perovskite solar cells have gained traction as a potential competitor to the mature silicon-based solar cells in terms of both cost and performance. Being a young technology, however, means little is known about its true market value. In order to understand this, it is important to both get an accurate estimate of manufacturing cost and explore potential applications. In this thesis, we develop a Monte Carlo cost analysis method and apply it towards a realistic perovskite module manufacturing sequence today. We determine a nominal cost estimate of $101.7/m2, which for a 15% efficient module comes out to $0.68/W. Compared to silicon, which hovers around $0.40/W, this is rather competitive, since most of the installed system cost comes from non-module components such as installation labor and racking. With the lightweight and flexible form factor of perovskite solar modules, new applications become possible. One such application is the installation of perovskite photovoltaics (PV) vertically on telecommunications towers. Since such towers cannot support the weight of conventional silicon PV, this is a potential market for perovskite PV that silicon cannot satisfy. Using HOMER microgrid simulation software, we determine that it is financially feasible to install vertical PV in countries with high diesel prices and low grid reliability, such as India.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 71-73).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119698
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.