MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Designing a mapping visualization to integrate physical and cyber domains

Author(s)
Tubacki, Nicole
Thumbnail
DownloadFull printable version (12.81Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vijay Gadepally.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The amount of data easily available to researchers makes observing patterns easier than ever, but certain fields like cyber security face certain specific challenges in the way this data can be represented, due to the ever-increasing amount and frequency of important data. Additionally, there are few visualizations that map data from the cyber domain to the physical domain, making it difficult for researchers to bridge the gap between cyber and physical spheres. This study aims to address some of these deficiencies by creating a prototype that visualizes both the cyber domain and the physical domain, allowing researchers to determine how the data associated with both these domains are connected. The prototype is a real-time mapping visualization that contains several different components and layers, including weather, major transportation hubs, location searches for places and IP addresses, and social network searches and analyses. This project is a proof of concept work to show the different options that can be implemented in mapping software and is intended to be extensible, customizable, and easily learned. After describing my design, I discuss several different options for customization and growth of the system in the future.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 63-64).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119703
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.