MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating Simulink HDL coder as a framework for flexible and modular hardware description

Author(s)
Sarge, Valerie Youngmi
Thumbnail
DownloadFull printable version (368.9Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Paul Monticciolo and Vivienne Sze.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis investigates the performance and viability of Simulink and HDL Coder from MathWorks as an alternative workflow for producing hardware description. Several designs were implemented towards this end. An FFT-based signal analyzer served as a pathfinding application to better understand the tools. In order to directly evaluate the ability of the workflow to faithfully recreate hardware operations, an existing architecture for nonlinear equalization was re-implemented and benchmarked. Finally, a new implementation of polynomial nonlinear equalization was created and benchmarked to explore the possible performance, parameterizability, and flexibility of hardware generated from a Simulink design. It was found that while the generated hardware does not perform quite as well as a hand-optimized design, it does perform well enough to be practical and also can be capable of greater flexibility in structure than a design created with a more traditional workflow.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (page 53).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119717
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.