MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A framework to search for machine learning pipelines

Author(s)
Ravikumar, Akshay
Thumbnail
DownloadFull printable version (834.2Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kalyan Veeramachaneni.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we present DeepMining, a framework to search for machine learning pipelines. The high-level goal of DeepMining is to solve the pipeline search problem: given a problem and a dataset, find the pipeline best-suited to solve that problem. The DeepMining platform serves as a testbed for developers to experiment with different methods of computing and evaluating machine learning pipelines. Specifically, developers have autonomy over how to evaluate different configurations in parallel, score a pipeline given a dataset and hyperparameter configuration, and efficiently search over the pipeline space. DeepMining was designed with modularity and extensibility in mind: developers can easily implement new search algorithms, scoring functions, and computation frameworks. At the same time, users can switch between these modules with minimal effort.
Description
Thesis: M. Eng. in Computer Science, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (page 81).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119720
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.