MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a teacher education model that improves teacher educator efficiency in processing teacher candidate data

Author(s)
Ng, Kevin (Kevin Y.)
Thumbnail
DownloadFull printable version (724.4Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Justin Reich.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Existing state of the art practice-based teacher education models either rely on heavy teacher educator time commitment to process teacher candidate performance stored in rich media like audio or video, or rely on teacher candidates to voluntarily share experiences with minimal teacher educator interaction with data. Using an iterative design process, I work with teacher educators to gauge interest in and build a new teacher education model that simplifies how teacher educators interact with rich media. The new model builds on Teacher Moments, an online simulator for preservice teachers, and takes advantage of state of the art speech recognition and data visualization technology to help teacher educators learn the contents of rich media generated by teacher candidates without dedicating the time to listen or watch media. In my investigation, I find that there is an interest in such a model and that the new model succeeds in empowering teacher educators with the ability to use teacher candidate data to inform instructional decisions and substantiate discussion point during group debrief sessions.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 49-50).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119729
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.