MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural Voice Activity Detection and its practical use

Author(s)
McEachern, Matthew
Thumbnail
DownloadFull printable version (4.477Mb)
Alternative title
Neural VAD and its practical use
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James Glass and Hao Tang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The task of producing a Voice Activity Detector (VAD) that is robust in the presence of non-stationary background noise has been an active area of research for several decades. Historically, many of the proposed VAD models have been highly heuristic in nature. More recently, however, statistical models, including Deep Neural Networks (DNNs) have been explored. In this thesis, I explore the use of a lightweight, deep, recurrent neural architecture for VAD. I also explore a variant that is fully end-to-end, learning features directly from raw waveform data. In obtaining data for these models, I introduce a data augmentation methodology that allows for the artificial generation of large amounts of noisy speech data from a clean speech source. I describe how these neural models, once trained, can be deployed in a live environment with a real-time audio stream. I find that while these models perform well in their closed-domain testing environment, the live deployment scenario presents challenges related to generalizability.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 87-90).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119733
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.