MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The loudest one wins : efficient communication in theoretical wireless networks

Author(s)
Markatou, Evangelia Anna
Thumbnail
DownloadFull printable version (606.6Kb)
Alternative title
Efficient communication in theoretical wireless networks
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Nancy Lynch.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In order to develop the most efficient algorithms for wireless networks, first one must understand their theoretical limitations. To this end, we study the leader election and broadcast problems in wireless networks, modeling them using the Signal-to- Interference-plus-Noise-Ratio (SINR) model. Our main result is an algorithm that solves the leader election problem in two communication rounds using power control, with high probability. Previously, it was known that [Omega](log n) rounds were sufficient and necessary when using uniform power, where n is the number of nodes in the network. We explore tradeoffs between communication complexity and power used, and show that to elect a leader in t rounds, a power range exp (n (1 [Theta] T) is sufficient and necessary. In addition, we present an efficient algorithm for the broadcast problem. Using power control, it is possible to achieve a broadcast algorithm that terminates successfully in 2n rounds, w.h.p..
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 68-70).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119737
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.