MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards quantum information processing with diamond color centers

Author(s)
Karamlou, Amir H
Thumbnail
DownloadFull printable version (2.881Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Dirk Robert Englund.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The DiVincenco requirements summarize the key properties that quantum systems should have to be useful for quantum computing. The work in this thesis focuses on one of the leading solid-state quantum systems, the nitrogen vacancy (NV) center in diamond. The NV has emerged as an excellent quantum sensor, in which quantum logic techniques can significantly improve performance. However, a remaining problem concerns the rate and fidelity of NV spin measurement. To address this problem in this thesis we first propose and theoretically demonstrate a scheme for spatially robust state-selective transitions with over 99.9% fidelity between different spin states in zero-field splitting. Furthermore, another central challenge tackled in this work is the efficient collection of the emitter's fluorescence. Optical antennas are appealing as they offer directional emission together with spontaneous emission rate enhancement across a broad emitter spectrum. We introduce and optimize metal-dielectric nano-antenna designs recessed into a diamond substrate and aligned with quantum emitters. We analyze trade-offs between external quantum efficiency, collection efficiency, Purcell factor, and overall collected photon rate. This analysis shows that an optimized metal-dielectric hybrid structure can increase the collected photon rate from a nitrogen vacancy center by over two orders of magnitude compared to a bare emitter. As a result, these metal-dielectric antennas should enable single-shot electron spin measurements of NV centers at room temperature.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 59-63).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119749
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.